DEVELOPMENT OF A NUMERICAL MODEL FOR ESTIMATION OF INLET TEMPERATURE OF A DUCT WITH BACKWARD FACING STEP

A dissertation submitted in partial fulfillment of requirement for the award of the degree of Master of Technology in Thermal Engineering by MITHUN TELANG (2010MET3027)

Under the supervision of Dr. Prabal Talukdar

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, DELHI NEW DELHI 110016 MAY 2012
CERTIFICATE

This is certify that dissertation entitled "Development of a Numerical Model for Estimation of Inlet Temperature of a Duct with Backward Facing Step" submitted by Mithun Telang to the Department of Mechanical Engineering, Indian Institute of Technology, Delhi, in partial fulfillment of the requirement for the award of the degree of Master of Technology in Thermal Engineering, is a record of student's original bonafide work done under my supervision and guidance. The matter embodied in this thesis has been submitted in part or full to anywhere for the award of any degree or diploma or for any other purpose.

Dr. Prabal Talukdar
Associate Professor
Department of Mechanical Engineering
Indian Institute of Technology, Delhi

Date 27/05/2012

New Delhi-110016
ACKNOWLEDGEMENT

I take this opportunity to express my deep sense of reverence and gratitude towards Dr. Prabal Talukdar for his whole-hearted co-operation, keep interest and valuable guidance during this work. Further his friendly behavior and continuous encouragement inspired me throughout the work. I would also like to thanks my examiner Dr. B. Premachandran for his valuable feedbacks during the course of this project work.

I would like to thanks Mr. Ajit Parwani and my friend Ritesh Kumar Parida for giving me their timely help throughout my work. I appreciate all my classmates and hostel mates for their ultimate care and affection towards me without which my study here might have been boring. Finally, most important are the blessings of Lord Buddha and continuous moral support of my family members who motivated me to concentrate on the work and in achieving my goals.

Mithun Telang
ABSTRACT

In the present work, a two dimensional forced convection heat transfer problem is considered. The main aim of work is to develop an algorithm for solving inverse heat transfer problems using the finite volume method (FVM) and conjugate gradient method (CGM). The objective is to predict the inlet temperature of the fluid flowing through a 2-D duct. Two different ducts are considered. The first one is a simple 2-D parallel plate channel and the second one is a duct with backward facing step. Formulation of the inverse heat transfer problem and discretization of the steady state governing equation are done using CGM and FVM respectively. The momentum equations for the rectangular duct are solved by an in house CFD code FASTED-3D and for duct with backward facing step; stream function-vorticity approach is used. A code in C language is developed to determine the temperature distribution inside the solution domain with known inlet temperature. These temperature distributions obtained are assumed as temperature measured by thermocouples to solve the inverse heat transfer problem. Another code in C language for a two dimensional geometry is developed to estimate the inlet temperature for the rectangular duct and duct with backward facing step. Results shows that satisfactory estimation of the inlet temperature can be obtained for the different test cases considered in this work.

Keywords: inverse heat transfer, finite volume method, inlet temperature estimation, conjugate gradient method, forced convection, backward facing step.
TABLE OF CONTENTS

CERTIFICATE .. i

ACKNOWLEDGEMENT .. ii

ABSTRACT ... iii

TABLE OF CONTENTS ... iv

List of Figure .. vi

Nomenclature .. viii

Chapter 1 ... 1

INTRODUCTION ... 1

1.1 Example of Inverse Heat Transfer Problem .. 2
1.2 Application of Inverse Heat Transfer .. 3
1.3 Classification of Inverse Heat Transfer Problems (IHTP) ... 3
1.4 Objective ... 4

Chapter 2 ... 5

LITERATURE REVIEW .. 5

2.1 Literature on Inverse Heat Transfer ... 5
2.2 Literature on Backward Facing Step Duct ... 8
2.3 Conclusions from Literature survey: ... 9

Chapter 3 ... 10

PROBLEM DESCRIPTION AND MATHEMATICAL MODELING 10

3.1 Methodology ... 10
3.2 Rectangular Duct ... 10

3.2.1 Mathematical Modeling ... 10
3.2.2 Discretization of convection-conduction equation in two dimensions 15
3.2.3 Computational Modeling .. 16

3.3 Duct with Backward Facing Step .. 17

3.3.1 Mathematical Modeling ... 17
3.3.2 Discretization of vorticity transport equation and Poisson Equation 19
3.3.3 Computational Modeling .. 20
Chapter 4 ... 21
RESULTS AND DISCUSSION ... 21
 5.1 Rectangular Duct ... 21
 (A) Duct of Height (H) = 0.5 m ... 21
 5.1(A).1 Assuming the inlet profile temperature as sine function 23
 5.1(A).2 Assuming the inlet profile temperature as step function 28
 (B) Duct of Height (H) = 0.1 m ... 29
 5.1(B) Assuming the inlet profile temperature as sine function 30
 5.2 Duct with backward facing step .. 34
 Assuming the inlet profile temperature as sine function 37

Chapter 5 ... 40
CONCLUSIONS .. 40

References: ... 41

Appendix ... 43