Development of an agent-based simulation of hepatitis C virus transmission dynamics in the Indian context

Soham Das

A dissertation submitted to the faculty of the Indian Institute of Technology of Delhi in partial fulfillment of the requirements for the degree of Master in Technology in the department of Mechanical Engineering

New Delhi 2019

Approved by:

Dr. Varun Ramamohan, Advisor
Dr. Nomesh Bolia, Examiner
Prof. S.K. Neogy, External Examiner
Dedicated to:

Didabhai, my grandmother who passed away on the 7th of July, 2019, with whose blessings I shall strive to make this world a healthier, happier and better place
Soham Das: Development of an agent-based simulation of hepatitis C virus transmission dynamics in the Indian context (under the guidance of Dr. Varun Ramamohan)

This thesis models the transmission of hepatitis C virus (HCV) in a high-risk population in the Indian state of Punjab and more specifically in the district of Ludhiana. The model once calibrated and validated is extended to the state of Punjab as a whole. Agent-based simulation has been used to model the transmission of the disease. This enabled modelling of the stochasticity of the transmission process and the individual heterogeneities. Each agent belonged to a family. Births and deaths were incorporated with daily rates resembling the age-wise population distribution as of 2011 and an average death rate for over the past fifty years.

This time of modelling can be verified by matching the HCV RNA (ribonucleic acid), HCV antibody and IDU (injecting drug user) prevalences in Ludhiana district as of 2014-15 (the latest data which is available from a comprehensive survey in the region). Also, the disease progression has been modelled using a discrete-time Markov model. This model has been frequently used in the progression of hepatitis C virus. Agent-based simulation enabled us to include an acute infection state in this model. We could also incorporate the relapse of disease once sustained virologic response (SVR) or cure was achieved. This in itself is a form of contribution to the disease progression modelling. The natural disease progression model was validated by observing the mean number of years lived by a person who dies of liver-related ailments due to HCV, since infection. In our model, this was found to be 30.75 years while the first paper on cost-effectiveness analysis of direct-acting antivirals in the Indian context found it to be 30.25 years (Aggarwal et al. 2017). This increase of six months can be attributed to the six months of acute infection stage in our model which was not present in the natural history model of Aggarwal et al. 2017.

The disease transmission takes place in four different representative environments, namely home, medical environment, social interaction environment and educational environment. These environments include different risk factors for HCV transmission such as unsafe medical procedures (unsafe blood transfusions, unsafe surgery, unsafe dental surgery and unsafe injection practices), unsafe sharing of contaminated needles and unprotected sex. Unsafe sharing of needles by IDUs was restricted to IDUs from the same cluster in the social interaction environment. Clustering was done by using distance-based k-means clustering. This was also true for influencing of non-IDUs into being IDUs. The cluster restriction was removed for interactions in the educational environment. The interactions between IDUs took place in groups of three. Treatment
using pegylated interferon and ribavirin was introduced for the last fifteen years of the burn-in period.

Once the model was run for a burn-in period of fifty years and the prevalences stabilized at the end of the burn-in period and the Markov model was validated. After that, two different regimes of directly-acting treatment were introduced for ten years. The effects of these regimes at different uptake rates on the HCV RNA prevalence, HCV antibody prevalence and IDU prevalence were noted. Of special interest was the active HCV infection represented by the HCV RNA prevalence. It was noted that when about 90% of the infected pool of patients were treated, the HCV RNA prevalence decreased a little over time for one regime of treatment while for the other regime, it still increased slightly over the years. This advocated the need for a public health awareness campaign for HCV to root out the disease at the transmission stage.

Sensitivity analysis with respect to percentage of unsafe medical professionals was done for the three prevalences. After this initial modelling was introduced, some parameters were re-calculated for the state of Punjab and the re-calibration of the model with respect to the prevalences in the Punjab context was started.
ACKNOWLEDGEMENTS

Right at the beginning, I offer my gratitude to the Almighty for the love, well-being, diligence and blessings due to which I could do my M.Tech well. I pray to the Lord to shower His blessings always on me. Without the power of the Lord, nothing can be achieved. With utmost faith, I proceed with my research.

My gratitude then will be offered to Dr. Varun Ramamohan, my M.Tech project supervisor. He has been a great source of motivation, and a very dear friend and mentor. It is only due to his encouragement and confidence in me that I have decided to pursue my Doctor of Philosophy programme with him. He has always been full of great ideas, and has given me opportunities to explore my interests. He has always encouraged me and has maintained his faith in me. He has taught me the importance of being honest and being very particular about research. He has instilled the understanding of detail in research work. There have been times when I might have put him in uncomfortable or embarrassing situations, but always as a friend he has advised me to improve myself. He has always advised me to aim high and try to achieve what I deserve.

I then thank Diptangshu Sen, my brother, colleague and student (if he would like to be recognized as one) without whom all this work would not have been possible. Both of us have worked through this research very patiently, and his sincerity and dedication right since day one was what has kept this research alive.

I will also extend my gratitude to Dr. Nomesh Bolia. He is another person from whom I have learnt a lot. He has been an inspiration in true terms. His understanding of stochastic modelling and stochastic processes is indeed deep and is inspiring in true terms. He has also made me understand the importance of mastering Linear Algebra. To be honest, Prof. Bolia inspires to be a scholar in at least one or two subjects. The best part about him is indeed his brilliance as an academic and his research as a doctoral scholar has aroused my interest.

I will also take this opportunity to thank Prof. Kiran Seth. He inspires to be a good and selfless human being. He is energetic and tireless at seventy and has made me believe in the abstractness of knowledge and wisdom. He has made me understand the importance of being excellent and working with him both as a teaching assistant and a volunteer for SPIC MACAY has been enriching and accomplishing as a human being. I will thank Prof. Suresh Chandra for opening up the horizons of optimization, linear algebra and functional analysis in my most cherished course of my M.Tech. I will also extend my humble gratitude to Prof. Prem Vrat, who has not only taught a few important courses of Industrial Engineering, but also been someone from whom deeper insights into daily life can be found. I will also express my gratitude to Dr. Shahab Fatima for the introductory course in Reliability Engineering. I also thank Prof. S.K. Neogy of ISI Delhi whose appreciation of and curiosity about my work as an external examiner was indeed fulfilling.

I will now thank my parents for being true friends and reliable supports. Their blessings, love, guidance and well-being are what I desire and pray for. They have worked very hard for me ever
since I was born and have never complained and accepted all decisions I have taken. My sister’s innocence and love for her younger brother are also priceless. My prayer to the Almighty is to keep them healthy, happy and with me constantly. I also take this opportunity to thank Tuli, who is that one person who completes me truly with her love and is someone whom I again look up to as a motivation to work hard and well. She has always kept her faith in tact in me, stood up for me and this is certainly what gives joy to me.

I also extend my thanks to Lakshay Taneja, who has a doctorate in philosophy under Prof. Bolia. At IIT Delhi, he has been like a guardian and someone whom I can look up to for advice. Never has he got bored or disturbed by my silly questions, but has been a support in true terms. I will take the opportunity to thank my friends, Gaurav, Shashank, Aman, Virendra and Vineet for believing in me and being with me during the past two years. I thank my seniors in the Industrial Engineering laboratory, Abhishek, Maansi, Kaveri and Shoaib for being great motivators and friends.

I also take the opportunity to thank Dr. Atanu Kumar Dutta, my professor at Jorhat Engineering College and my uncle, with whose advice I joined IIT Delhi. He, too was an M.Tech student at this institute during 1990-91. With the same spirit, I thank Dr. Tushar Kanti Bhattacharjee, the ex-principal of Jorhat Engineering College and a close friend of my father for having created an early interest in Industrial Engineering and Operations Research in me. I also extend my gratitude to Krishan Kumar Sharma of the Mechanical Engineering Office of IIT Delhi for being supportive and helpful always. I will also extend my gratitude to Prof. S.K. Saha, the ex-head of the department of Mechanical Engineering, IIT Delhi for the help provided during my registration as an M.Tech student here.

I also thank the students whom I have taught in tutorial and laboratory classes during my M.Tech. Their appreciation for and faith in me have humbled me and driven me to work with greater zeal.

At the end, I extend my prayers to my recently deceased grandmother, Didabhai. I know I can never meet you again in this world, and the night when I slipped out without informing you is a night I can never forget. But I promise to be a worthy grandson and take forward your blessings to be a good human being and work for the betterment of Mankind.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>11</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>13</td>
</tr>
<tr>
<td>PROBLEM STATEMENT</td>
<td>16</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>17</td>
</tr>
<tr>
<td>MODEL DEVELOPMENT</td>
<td>17</td>
</tr>
<tr>
<td>NATURAL HISTORY MODEL OF HCV</td>
<td>20</td>
</tr>
<tr>
<td>DISEASE TRANSMISSION THROUGH ENVIRONMENTAL INTERACTIONS</td>
<td>23</td>
</tr>
<tr>
<td>HOME INTERACTIONS</td>
<td>24</td>
</tr>
<tr>
<td>MEDICAL ENVIRONMENT INTERACTIONS</td>
<td>25</td>
</tr>
<tr>
<td>SOCIAL INTERACTION ENVIRONMENT INTERACTIONS</td>
<td>29</td>
</tr>
<tr>
<td>EDUCATIONAL ENVIRONMENT INTERACTIONS</td>
<td>33</td>
</tr>
<tr>
<td>TREATMENT</td>
<td>33</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSIONS</td>
<td>36</td>
</tr>
<tr>
<td>GANTT CHART</td>
<td>48</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1- HCV transmission model: overview 18
Figure 2- Markov model 21
Figure 3- Flowchart for home interactions 24
Figure 4- Medical environment interaction model 25
Figure 5- Social interaction environment model 29
Figure 6- Geographical distance-based clustering of the Ludhiana district population 32
Figure 7- Incidence rates at different uptake rates for SOF+LED (for G1 and G4) and SOF+DAC(for G3) 39
Figure 8- HCV RNA prevalence trends at different uptake rates for SOF+LED (for G1 and G4) and SOF+DAC (for G3) 39
Figure 9- HCV antibody prevalence trends at different uptake rates for SOF+LED (for G1 and G4) and SOF+DAC (for G3) 40
Figure 10- IDU prevalence trends at different uptake rates for SOF+LED (for G1 and G4) and SOF+DAC (for G3) 40
Figure 11- Incidence rates trends at different uptake rates for SOF+VEL 41
Figure 12- HCV RNA prevalence trends at different uptake rates for SOF+VEL 41
Figure 13- HCV antibody prevalence trends at different uptake rates for SOF+VEL 42
Figure 14- IDU prevalence trends at different uptake rates for SOF+VEL 42
Figure 15- HCV RNA prevalence trends at different percentages of unsafe medical professionals
Figure 16- HCV antibody prevalence trends at different percentages of unsafe medical professionals

(1 unit = 12.5%) 44

Figure 17- Scattered plot of 20,000 families on the grid map of Punjab 46

LIST OF TABLES

Table 1 - Birth rate calculations 20
Table 2 - Health state descriptions: HCV natural history 22
Table 3 - Transition probabilities: HCV natural history model [Aggarwal et al 2017] 22
Table 4 - Medical environment parameters 26
Table 5 - Social interaction environment parameters 30
Table 6 - Probabilities of achieving SVR by genotype with previous standard of care (pegylated interferon and ribavirin) [Sood et al 2014] [Rao et al 2014] 34
Table 7 - Probabilities of achieving SVR with sofosbuvir + ledipasvir and sofosbuvir + daclatasvir [Mehta 2018] 35
Table 8 - Probabilities of achieving SVR with sofosbuvir + velpatasvir [Sood 2019] 35
Table 9 - Sensitivity analysis with respect to percentage of unsafe medical professionals 43
Table 10 - Parameters whose values have been changed or re-calibrated for adjusting to the Punjab values and prevalence targets 45